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Fig. 5.— The SPT bandpowers, WMAP bandpowers, and best-fit ΛCDM theory spectrum shown with dashed (CMB) and solid
(CMB+foregrounds) lines. The bandpower errors do not include beam or calibration uncertainties.

Fig. 6.— The one-dimensional marginalized constraints on the six cosmological parameters in the baseline model. The constraints from
SPT+WMAP are shown by the blue solid lines, while the constraints from WMAP alone are shown by the orange dashed lines.
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Figure 8. Points with errors show our measurement of P̂halo(k). We show
√

Cii as error bars; recall that the points are positively correlated. We plot the
best-fitting WMAP5+LRG !CDM model ("m, "b, "!, ns, σ 8, h) = (0.291, 0.0474, 0.709, 0.960, 0.820, 0.690) with best-fitting nuisance parameters a1 =
0.172 and a2 = −0.198 (solid curve), for which χ2 = 40.0; the dashed line shows the same model but with a1 = a2 = 0, for which χ2 = 43.3. The BAO inset
shows the same data and model divided by a spline fit to the smooth component, P smooth, as in fig. 4 of P10. In Section 5.1, we find that the significance of the
BAO detection in the P̂halo(k) measurement is %χ2 = 8.9.

In more extended models than we have thus far considered, we
may expect the additional shape information to allow tighter con-
straints. The cosmological parameters most closely constrained by
the broad P(k) shape are those which affect the shape directly
or which affect parameters degenerate with the shape: these are
expected to be the power spectrum spectral slope ns, its running
dns/d ln k, neutrino mass mν and the number of relativistic species
Neff . Thus far in our analysis, we have assumed dns/d ln k = 0,
mν = 0 and N eff = 3.04.

One intuitively expects the measurement of P̂halo(k) to improve
constraints on the primordial power spectrum. In a !CDM model
where both running of the spectral index and tensors are allowed,
WMAP5 still places relatively tight constraints on the primordial
power spectrum: ns = 1.087+0.072

−0.073 and d ln ns/d ln k = −0.05 ± 0.03.
The measurement reported in this paper probes at most %ln k ∼ 2
and covers a range corresponding to ' ∼ 300–3000; this range
overlaps CMB measurements but extends to smaller scales. Over
this k-range and for this model, WMAP5 constrains the P(k) shape
to vary by ∼8 per cent from variations in the primordial power
spectrum. Due to the uncertainties in the relation between the galaxy
and underlying matter density fields, our nuisance parameters alone
allow P halo(k, p) to vary by up to 10–14 per cent over this region.

Therefore, we do not expect significant gains on ns or d ln ns/d ln k

from our measurement.
The effect of massive neutrinos in the CMB power spectrum is

to increase the height of the high ' acoustic peaks: free streaming
neutrinos smooth out perturbations, thus boosting acoustic oscilla-
tions. In the matter power spectrum instead, neutrino free streaming
gives a scale-dependent suppression of power on the scales that
large-scale structure measurements currently probe (Lesgourgues
& Pastor 2006). This makes these two observables highly comple-
mentary in constraining neutrino masses with cosmology.

We start by comparing the constraints from WMAP5+P̂halo(k)
and WMAP5+BAO (using the P10 BAO likelihood) in the !CDM
model with three degenerate massive neutrino species. In particular,
we vary the !CDM parameters (as in Table 3) and

∑
mν . While

WMAP5 alone finds
∑

mν < 1.3 eV with 95 per cent confidence,
WMAP5+P̂halo(k) yields

∑
mν < 0.62 eV, which is a significant

improvement over
∑

mν < 0.78 eV (WMAP5+BAO). The upper
panel of Fig. 11 compares the likelihood for mν for WMAP5 data
alone (dashed) and in combination with P̂halo(k).

A change in the number of relativistic species in the early uni-
verse changes the epoch of matter-radiation equality and thus shifts
the CMB acoustic peaks. The CMB constrains the redshift of
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Extensions of the standard cosmological model
There are some extensions which are ‘expected‘ at some level:

Non-zero gravitational-wave contribution

Running of the spectral index

Non-zero neutrino mass

Time varying dark energy equation of state

Others would seriously challenge the standard cosmological 
model:

Non-Gaussianity
Parity violating interactions

Anisotropic processes 

Effective number of neutrino species 
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Fig. 11.— The one-dimensional marginalized constraint on the effective number of relativistic species Neff . The standard value of

Neff = 3.046 is shown by the vertical dotted line.

TABLE 6

Constraints on Cosmological Parameters using

SPT+WMAP+H0+BAO+Clusters

ΛCDM ΛCDM ΛCDM

+ dns/d ln k + Yp + Neff

Primary 100Ωbh
2 2.23± 0.040 2.26± 0.045 2.24± 0.041

Parameters Ωch
2 0.111± 0.0020 0.111± 0.0020 0.116± 0.0054

100θs 1.04± 0.0016 1.04± 0.0019 1.04± 0.0017

ns 0.9751± 0.0110 0.9787± 0.0123 0.9757± 0.0116

τ 0.0897± 0.015 0.0852± 0.014 0.0821± 0.014

109∆2
R 2.33± 0.092 2.35± 0.082 2.37± 0.081

Extension dns/d ln k −0.017± 0.012 — —

Parameters Yp (0.2478± 0.0002) 0.288± 0.029 (0.2526± 0.004)

Neff (3.046) (3.046) 3.42± 0.32

Derived σ8 (0.809± 0.014) (0.819± 0.016) (0.823± 0.019)

χ2
min 7509.3 7509.3 7510.3

The constraints on cosmological parameters using

SPT+WMAP7+H0+BAO+Clusters, where “Clusters” refers to the local

cluster abundance measurement of Vikhlinin et al. (2009). We report the mean

of the likelihood distribution and the symmetric 68% confidence interval about

the mean.
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Fig. 9.— Constraints on the effective number of relativistic species, Neff . Left: One-dimensional marginalized distribution for Neff , for
data combinations indicated in the right panel. The standard model assumes three light neutrino species (Neff=3.04, dotted line); the mean
value is higher, but 3.04 is within the 95% CL. Right: Two-dimensional marginalized distribution for Neff and equality redshift zeq, showing
that Neff can be measured separately from zeq. Neff is bounded from above and below by combining the small-scale ACT measurements of
the acoustic peaks with WMAP measurements. The limit is further tightened by adding BAO and H0 constraints, breaking the degeneracy
between Neff and the matter density by measuring the expansion rate at late times.

measured by ACT offers a probe of possible deviations
from this standard model.

4.3.1. Number of relativistic species

The CMB is sensitive to the number of relativistic
species at decoupling. Changing the effective number
of species affects the evolution of perturbations by alter-
ing the expansion rate of the universe. Neutrinos also
stream relativistically out of density fluctuations, with
additional species suppressing the CMB peak heights and
shifting the acoustic peak positions (Ma & Bertschinger
1995; Bashinsky & Seljak 2004).
The standard model of particle physics has three light

neutrino species, consistent with measurements of the
width of the Z boson, giving Nν = 2.984± 0.008 (Parti-
cle Data Book). Three neutrino species contribute about
11% of the energy density of the universe at z ≈ 1100,
with ρrel = [7/8(4/11)4/3Neff ]ργ . Cosmological datasets
are sensitive to ρrel, which can be composed of any
light particles produced during the Big Bang that do
not couple to electrons, ions, or photons; or any ad-
ditional contribution to the energy density of the uni-
verse such as gravitational waves. Three light neutrino
species correspond to Neff=3.04. Any deviation would
indicate either additional relativistic species, or evidence
for non-standard interactions or non-thermal decoupling
(Bashinsky & Seljak 2004).
Recent constraints on the number of relativistic species

have been explored with CMB data from WMAP com-
bined with low redshift probes by e.g., Spergel et al.
(2007); Ichikawa et al. (2007); Mangano et al. (2007);
Hamann et al. (2007); Dunkley et al. (2009); Komatsu
et al. (2010); Reid et al. (2010). With WMAP data a
detection was made of relativistic species with Neff> 2.7
(95% CL), but the upper level was unconstrained. By
combining with distance measures, Komatsu et al. (2010)
limit the number of species to Neff= 4.34±0.88, and Reid
et al. (2010) added optical cluster limits and LRG power

spectrum measures to find Neff= 3.77 ± 0.67. Mantz,
Allen, & Rapetti (2010a) include X-ray cluster gas frac-
tion and cluster luminosity measurements from ROSAT
and Chandra to estimate Neff= 3.4+0.6

−0.5, improving limits
by constraining the matter power spectrum at low red-
shift. BBN observations limit Neff to 3.24± 0.6 (Cyburt
et al. 2005).
By combining the ACT power spectrum measurement

with WMAP, the effective number of species is estimated
from the CMB to be

Neff = 5.3± 1.3 (68% CL). (26)

A universe with no neutrinos is excluded at 4σ from the
CMB alone, with the marginalized distribution shown
in Figure 9. We can now put an upper bound on Neff
from the CMB alone using ACT. This improved measure-
ment comes from the third to seventh peak positions and
heights. The right panel of Figure 9 shows the redshift
of equality, zeq, as a function of the number of species.
The relation of zeq to the number of species is given in
Eq. 53 of Komatsu et al. (2010). With large scale mea-
surements the observable quantity from the third peak
height is just zeq, leading to a strong degeneracy between
Neff and Ωch2. With small-scale information the CMB
data allow a measure of Neff in addition to zeq due to
the additional effects of anisotropic stress on the pertur-
bations. As an example, a model with Neff= 10 that
fits the WMAP data is shown in Figure 5. With a large
Neff the higher peaks are damped, and slightly shifted
to larger multipoles. The model is excluded by the ACT
spectrum in the 1000 < # < 2500 regime.
The central value for Neff preferred by the

ACT+WMAP data is 1.7σ above the concordance value,
with increased damping over the ΛCDM model; im-
proved measurements of the spectrum will help refine
this measurement. This is not interpreted as a statisti-
cally significant departure from the concordance value;
the best-fit χ2 is only 1.3 less than for Neff=3.04. The

ACT+WMAP
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+H0+BAO
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Fig. 11.— The one-dimensional marginalized constraint on the effective number of relativistic species Neff . The standard value of

Neff = 3.046 is shown by the vertical dotted line.
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Fig. 9.— Constraints on the effective number of relativistic species, Neff . Left: One-dimensional marginalized distribution for Neff , for
data combinations indicated in the right panel. The standard model assumes three light neutrino species (Neff=3.04, dotted line); the mean
value is higher, but 3.04 is within the 95% CL. Right: Two-dimensional marginalized distribution for Neff and equality redshift zeq, showing
that Neff can be measured separately from zeq. Neff is bounded from above and below by combining the small-scale ACT measurements of
the acoustic peaks with WMAP measurements. The limit is further tightened by adding BAO and H0 constraints, breaking the degeneracy
between Neff and the matter density by measuring the expansion rate at late times.

measured by ACT offers a probe of possible deviations
from this standard model.

4.3.1. Number of relativistic species

The CMB is sensitive to the number of relativistic
species at decoupling. Changing the effective number
of species affects the evolution of perturbations by alter-
ing the expansion rate of the universe. Neutrinos also
stream relativistically out of density fluctuations, with
additional species suppressing the CMB peak heights and
shifting the acoustic peak positions (Ma & Bertschinger
1995; Bashinsky & Seljak 2004).
The standard model of particle physics has three light

neutrino species, consistent with measurements of the
width of the Z boson, giving Nν = 2.984± 0.008 (Parti-
cle Data Book). Three neutrino species contribute about
11% of the energy density of the universe at z ≈ 1100,
with ρrel = [7/8(4/11)4/3Neff ]ργ . Cosmological datasets
are sensitive to ρrel, which can be composed of any
light particles produced during the Big Bang that do
not couple to electrons, ions, or photons; or any ad-
ditional contribution to the energy density of the uni-
verse such as gravitational waves. Three light neutrino
species correspond to Neff=3.04. Any deviation would
indicate either additional relativistic species, or evidence
for non-standard interactions or non-thermal decoupling
(Bashinsky & Seljak 2004).
Recent constraints on the number of relativistic species

have been explored with CMB data from WMAP com-
bined with low redshift probes by e.g., Spergel et al.
(2007); Ichikawa et al. (2007); Mangano et al. (2007);
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limit the number of species to Neff= 4.34±0.88, and Reid
et al. (2010) added optical cluster limits and LRG power
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tion and cluster luminosity measurements from ROSAT
and Chandra to estimate Neff= 3.4+0.6
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by constraining the matter power spectrum at low red-
shift. BBN observations limit Neff to 3.24± 0.6 (Cyburt
et al. 2005).
By combining the ACT power spectrum measurement

with WMAP, the effective number of species is estimated
from the CMB to be
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A universe with no neutrinos is excluded at 4σ from the
CMB alone, with the marginalized distribution shown
in Figure 9. We can now put an upper bound on Neff
from the CMB alone using ACT. This improved measure-
ment comes from the third to seventh peak positions and
heights. The right panel of Figure 9 shows the redshift
of equality, zeq, as a function of the number of species.
The relation of zeq to the number of species is given in
Eq. 53 of Komatsu et al. (2010). With large scale mea-
surements the observable quantity from the third peak
height is just zeq, leading to a strong degeneracy between
Neff and Ωch2. With small-scale information the CMB
data allow a measure of Neff in addition to zeq due to
the additional effects of anisotropic stress on the pertur-
bations. As an example, a model with Neff= 10 that
fits the WMAP data is shown in Figure 5. With a large
Neff the higher peaks are damped, and slightly shifted
to larger multipoles. The model is excluded by the ACT
spectrum in the 1000 < # < 2500 regime.
The central value for Neff preferred by the

ACT+WMAP data is 1.7σ above the concordance value,
with increased damping over the ΛCDM model; im-
proved measurements of the spectrum will help refine
this measurement. This is not interpreted as a statisti-
cally significant departure from the concordance value;
the best-fit χ2 is only 1.3 less than for Neff=3.04. The
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radiative background... but no other information
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What can this be?  Most explanations (such as sterile 
neutrinos) suppose that this background will be non-
interacting 

We were interested in exploring to what extent the 
observations can show that this background is non-
interacting

Following Hu (1998) we modify the evolution equations by 
introducing two new parameters       and 
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Fig. 5.— The SPT bandpowers, WMAP bandpowers, and best-fit ΛCDM theory spectrum shown with dashed (CMB) and solid
(CMB+foregrounds) lines. The bandpower errors do not include beam or calibration uncertainties.

Fig. 6.— The one-dimensional marginalized constraints on the six cosmological parameters in the baseline model. The constraints from
SPT+WMAP are shown by the blue solid lines, while the constraints from WMAP alone are shown by the orange dashed lines.
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TABLE I:

Marginalized 1D constraints

Neff c2vis c2eff
4.0+0.17+0.58

−0.18−0.57 1/3 1/3

3.77+0.18+0.68
−0.19−0.65 0.33+0.04+0.21

−0.06−0.15 0.31± 0.015+0.029
−0.030

3 0.44+0.056+0.27
−0.085−0.21 0.30± 0.013+0.027

−0.026

1† < 2.2 0.29± 0.043+0.1
−0.075

2† < 0.51 0.34± 0.03+0.062
−0.052

NOTES.—Errors are 68%, 95% C.L.; upper limits are 95% C.L.
† For these chains, the number of effective relativistic degrees of

freedom with c2vis = c2eff = 1/3 is fixed to three while c2vis and c2eff
applied to one or two extra degrees of freedom are allowed to vary.

ing c
2
vis = c

2
eff = 1/3 we find Yp = 0.294 ± 0.033+0.064

−0.067

and Neff = 3.64+0.21+0.86
−0.24−0.79 which is in slight (∼1.5σ)

disagreement with astrophysical measurements [26] and
BBN predictions for Yp [25]. However, when we also al-
low cvis and ceff to vary, the helium fraction preferred
by the data decreases to Yp = 0.257± 0.051± 0.1 which
is well within the astrophysical measurements and the
value from BBN. We find the number of effective neutrino
species is Neff = 3.73+0.24+0.98

−0.28−0.89 with c
2
vis = 0.33+0.04+0.22

−0.06−0.16

and c
2
eff = 0.315± 0.018+0.037

−0.033.
We note that our modified perturbation equations only

apply to massless degrees of freedom. However, since a
non-zero mass predominately affects the late-time (post-
recombination) evolution of the perturbations, its effects
are separated in time (and hence we expect should be
fairly uncorrelated) from the effects of varying cvis and
ceff , which are most important before and during recom-
bination. We leave a simultaneous constraint on the neu-
trino mass, cvis and ceff to future work.

Conclusions. We have used current CMB and LSS
data to explore various properties of perturbations in the
CNB. In particular, we have parameterized the evolution
of the neutrino perturbations with two additional pa-
rameters: a rest-frame sound speed, c2eff , and a viscosity
parameter c

2
vis, which both equal 1/3 for the standard,

non-interacting, CNB. With c
2
vis = c

2
eff = 1/3 we find

that current data favors an anomalously large standard
CNB energy density at the 99.9% C.L.. When cvis and
ceff are allowed to vary the data also prefers an anoma-
lously low value of ceff . In this case the standard value
(Neff , c

2
eff) = (3, 1/3) is disfavored at slightly greater than

the 95% C.L. relative to the 2D-marginalized contours.
Our results can be interpreted as providing a tentative

hint that the CNB has non-negligible interactions
with some other component leading to c

2
eff < 1/3,

in an analogy with the tight coupling regime of the
baryon-photon fluid. The preference for a low ceff is
driven by the small-scale observations of the CMB,
as is shown by a comparison between the blue-dashed
contour (WMAP7+SDSS+H0), the dotted contour

(WMAP7+ACBAR+ACT+SPT), and thick contour
(WMAP7+ACBAR+ACT+SPT+SDSS+H0+Lyman-
alpha) in Fig. 3.

Using a Fisher analysis we find that future observations
of the CMB with the Planck satellite [27] will provide a
measurement of Neff = 3.0 ± 0.17, c2vis = 0.333 ± 0.026,
and c

2
eff = 0.333± 0.004. If future observations continue

to provide evidence for the presence of extra relativistic
energy density then, when applied to one additional ef-
fective neutrino degree of freedom, Planck will constrain
c
2
vis = 0.3 ± 0.1 and c

2
eff = 0.333 ± 0.017. The improved

sensitivity to these parameters will allow a constraint on
the fundamental properties of any new radiative degrees
of freedom.
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a decreased (increased) pressure for the CNB in its rest-

frame, which in turn causes the amplitude of the neutrino

density perturbations to increase (decrease), as seen on

the right hand side of Fig. 1 in the red, dot-dashed (blue,

dashed) curve. The lower panels in Fig. 1 shows the cor-

responding evolution for the Newtonian potential ΦN .

This parameterization can be directly mapped onto a

scenario in which neutrinos have a significant interaction

cross-section. As an example, if neutrinos tightly couple

to a perfect fluid then c
2
vis = 0 and an analogy can be

made between our parameterization and the tightly cou-

pled photon-baryon fluid with a constant sound speed,

c
2
s, related to c

2
eff through, 3c

2
s ≈

�
c
2
eff + 2/3

�
.

We show how the CMB temperature power-spectrum

is modified in this parameterization in Fig. 2. Note that

an increase (decrease) in ceff leads to an increase (de-

crease) in the scales at which the neutrino perturbations

affect the CMB. This is due to the increase (decrease) in

the the neutrino sound horizon. These parameters have

a similar effect on the polarization power-spectrum, not

shown here. However, since the effects of the CNB per-

turbations are negligible by the time large-scale structure

forms, the change to the matter power-spectrum is neg-

ligible [6].

Results. In order to measure these parameters we used

a modified version of the publicly available Boltzmann

code, CAMB [18] along with the publicly available Monte

Carlo Markov chain code, CosmoMC [20]. We used a

combination of CMB and LSS data including WMAP7

[21], ACBAR [22], ACT [11], SPT [12], the Sloan Digital

Sky Survey (SDSS) DR7 LRG matter power spectrum

[23], the SDSS small-scale matter power-spectrum mea-

sured from the Lyman-alpha forest [13] and the latest

determination of the Hubble parameter, H0, using the

Hubble Space Telescope [24].

In addition to various combinations of (Neff , c
2
vis, c

2
eff)

we allowed the standard six cosmological parameters,

(As, ns, τ, θ,Ωbh
2
,Ωdmh

2
), to vary, where As is the am-

plitude of the primordial power-spectrum, ns is the spec-

tral index, τ is the optical depth, θ is the angular acoustic
scale of the CMB, h is the Hubble parameter in units of

100 km/(s Mpc), Ωb is the baryon density in units of

the critical density, and Ωdm is the dark matter density

in units of the critical density. All constraints, except

where noted, force the Helium fraction, Yp, to be fixed

by its BBN relationship to Ωbh
2
and Neff [25].

A summary of our results can be found in Table I.

Varying the number of effective neutrino species, Neff ,

with c
2
vis = c

2
eff = 1/3 we recover a preference for an

anomalous radiative energy density at the ≈ 99.9% C.L.

When we allow cvis and ceff to vary as well, the signifi-

cance of any anomalous radiative energy density changes

to 97.2% C.L. Additionally, the marginalized mean value

of c
2
eff = 0.31± 0.015 is lower than the expected value of

1/3 at the 87.5% C.L. Therefore, as shown by the blue

circle in the right-hand panel of Fig. 3, the standard value

FIG. 3: Two dimensional contours (68% and 95% C.L.) show-
ing the degeneracy between cvis/ns and ceff/Neff . The dot-
ted contours show the constraints when only CMB data is
used. The blue-dashed contours show the constraints when
restricting the CMB to just WMAP7 and large-scale struc-
ture data, excluding the Lyman-alpha data. The thin-solid
contours show constraints when restricting the CMB to just
WMAP7 and with all large-scale structure data. The thick
contours show the constraints when all of the data are in-
cluded. The blue circle shows that the standard value of
c2eff = 1/3 and Neff = 3 is excluded at slightly higher than
the 95% C.L.

of (Neff , c
2
eff) = (3, 1/3) is still disfavored at higher than

the 95% C.L.

Since a change in ceff introduces a new length-scale

(the neutrino sound-horizon) its affect on the CMB is

only slightly correlated with the other parameters. This

scale-dependence is clearly shown in Fig. 2 around the

first peak. Because of its lack of strong correlations, the

observations place a precise constraint on c
2
eff as shown in

Fig. 3. Constraints to c
2
vis are not as precise because its

affect on the CMB is scale-free leading to a degeneracy

with, for example, the scalar spectral index, ns, shown

on the left-hand panel of Fig. 3.

Given the tentative evidence for an anomalously large

radiative energy density, it is of interest to consider the

case where the number of neutrinos (with c
2
vis = c

2
eff =

1/3) is fixed to three and to constrain the values of c
2
vis

and c
2
eff applied to an additional one or two effective

species. We show the results of this analysis in Table

I.

Since both cvis and ceff modulate the amplitude of

small-scale power in the CMB we explored degeneracies

with the running of the spectral index, αs ≡ dns/d ln k.

Excluding the Lyman-alpha data and fixing c
2
vis = c

2
eff =

1/3 we find, αs = −0.020 ± 0.013 ± 0.026 and Neff =

3.53± 0.21± 0.72. Allowing both cvis and ceff to vary we

find αs = −0.019± 0.016± 0.03, Neff = 3.49± 0.20
+0.73
−0.70,

c
2
vis = 0.29

+0.05+0.27
−0.08−0.19and c

2
eff = 0.33± 0.02

+0.05
−0.04 .

Finally, we explored how our parameterization is de-

generate with a free primordial helium mass fraction (i.e.,

not fixed by BBN) which also affects the amplitude of the

small-scale CMB power through Silk-damping [14]. Fix-

These constraints provide further 
evidence that there may be extra 
non-interacting neutrino-like degrees 
of freedom

Extend parameterization for neutrino mass

Planck will be able to constrain:

Aspen Gravity Workshop 2009 Tristan Smith
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Non-Gaussian estimation from the CMB
The standard cosmological model predicts that the 
primordial fluctuations obey Gaussian statistics

It is simple to think of a few basic ways to test this 
prediction

12 CHAPTER 1. INTRODUCTION

Figure 1.6: Adiabatic Non-Gaussianity: One-point p.d.f

One-point probability density distribution function (p.d.f) of the CMB anisotropy, ∆T/T ,
comparing a Gaussian p.d.f with non-Gaussian p.d.f’s of non-linear adiabatic fluctuations
produced in inflation. The dashed line plots Gaussian distribution. The solid line plots non-
Gaussian distribution for fNL = 1000, the dotted line for fNL = 5000. The larger fNL is, the
more negatively skewed p.d.f becomes. If fNL < 0, then p.d.f becomes positively skewed.

One way is to look at the PDF 
of the temperature fluctuations 
in the CMB

Komatsu (2002)

It turns out that the signal-to-
noise using the PDF is sub-
optimal
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Non-Gaussian estimation from the CMB
Instead, we want to use the fact that any process which 
is Gaussian is uniquely determined by its mean,    , and 
variance, 

An obvious test of Gaussianity then asks: is the third 
moment zero? and is the fourth moment just given by 
the Gaussian piece?

We can see that, for instance, the three-point function is now 
non-zero:

where     is a Gaussian random field and     is the primordial 
curvature potential

Tristan Smith

Non-Gaussian estimation from the CMB
To make progress we use a parameterization for the level of 
non-Gaussianity in the CMB maps

Tristan Smith

Non-Gaussian estimation from the CMB
The harmonic coefficients of the temperature field on the sky 
are related to the primordial curvature potential

cal results. Both the formalism and the numerical results are
main results of this paper. We also discuss how well we can
separate the primary bispectrum from various secondary
bispectra.
This paper is organized as follows. Section II defines the

bispectrum, the Gaunt integral, and particularly the new
quantity called the ‘‘reduced’’ bispectrum, which plays a
fundamental role in estimating the physical property of the
bispectrum. Section III formulates the primary bispectrum
that uses the full radiation transfer function, and presents the
numerical results of the primary bispectrum and the skew-
ness. Section IV estimates the secondary bispectra from the
coupling between the Sunyaev-Zel’dovich and the weak
lensing effects !20–22", and from extragalactic radio and in-
frared sources. Section V studies how well we can measure
each bispectrum, and how well we can discriminate among
various bispectra. Section VI is devoted to further discussion
and our conclusion.

II. DEFINING THE ‘‘REDUCED’’ BISPECTRUM

The observed CMB temperature fluctuation field
#T(n̂)/T is expanded into spherical harmonics:

alm$! d2n̂
#T% n̂&

T Y lm* % n̂&, %1&

where carets denote unit vectors. The CMB angular bispec-
trum is given by

Bl1l2l3
m1m2m3$'al1m1al2m2al3m3(, %2&

and the angle-averaged bispectrum is defined by

Bl1l2l3$ )
m1m2m3

" l1 l2 l3
m1 m2 m3

#Bl1l2l3
m1m2m3, %3&

where the matrix is the Wigner-3 j symbol. The bispectrum
Bl1l2l3
m1m2m3 must satisfy the triangle conditions and selection
rules: m1!m2!m3"0, l1!l2!l3"even and $l i#l j$*lk
*l i!l j for all permutations of indices. Thus, Bl1l2l3

m1m2m3 con-

sists of the Gaunt integral, Gl1l2l3
m1m2m3, defined by

Gl1l2l3
m1m2m3$! d2n̂Y l1m1% n̂&Y l2m2% n̂&Y l3m3% n̂&

"!%2l1!1 &%2l2!1 &%2l3!1 &

4+ " l1 l2 l3
0 0 0 #

$" l1 l2 l3
m1 m2 m3

# . %4&

Gl1l2l3
m1m2m3 is real, and satisfies all the conditions mentioned
above.
Given the rotational invariance of the universe, Bl1l2l3 is

written as

Bl1l2l3
m1m2m3"Gl1l2l3

m1m2m3bl1l2l3, %5&

where bl1l2l3 is an arbitrary real symmetric function of
l1 , l2, and l3. This form of Eq. %5& is necessary and suffi-
cient to construct generic Bl1l2l3

m1m2m3 under rotational invari-

ance. Thus, we shall frequently use bl1l2l3 instead of Bl1l2l3
m1m2m3

in this paper, and call this function the ‘‘reduced’’ bispec-
trum, as bl1l2l3 contains all physical information in Bl1l2l3

m1m2m3.
Since the reduced bispectrum does not contain the Wigner-
3 j symbol, which merely ensures the triangle conditions and
selection rules, it is easier to calculate and useful to quantify
the physical properties of the bispectrum.
The observable quantity, the angle-averaged bispectrum

Bl1l2l3, is obtained by substituting Eq. %5& into Eq. %3&:

Bl1l2l3"!%2l1!1 &%2l2!1 &%2l3!1 &

4+ " l1 l2 l3
0 0 0 # bl1l2l3,

%6&

where we have used the identity

)
m1m2m3

" l1 l2 l3
m1 m2 m3

#Gl1l2l3
m1m2m3

"!%2l1!1 &%2l2!1 &%2l3!1 &

4+ " l1 l2 l3
0 0 0 # . %7&

Alternatively, one can define the bispectrum in the flat-
sky approximation:

'a% l1&a% l1&a% l3&("%2+&2, (2)% l1!l2!l3&B% l1 ,l2 ,l3&,
%8&

where l is the two dimensional wave vector on the sky. This
definition of B(l1 ,l2 ,l3) corresponds to Eq. %5&, given the
correspondence of Gl1l2l3

m1m2m3→, (2)(l1!l2!l3) in the flat-sky
limit !23". Thus,

bl1l2l3-B% l1 ,l2 ,l3& %flat-sky approximation& %9&

is satisfied. This fact also would motivate us to use the re-
duced bispectrum bl1l2l3 rather than the angular averaged
bispectrum Bl1l2l3. Note that bl1l2l3 is similar to B̂ l1l2l3 de-
fined by Magueijo !18". The relation is bl1l2l3"!4+B̂ l1l2l3.

III. PRIMARY BISPECTRUM AND SKEWNESS

A. Model of the primordial non-Gaussianity

If the primordial fluctuations are adiabatic scalar fluctua-
tions, then

alm"4+%#i & l! d3k

%2+&3
.%k&gTl%k &Y lm* % k̂&, %10&
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so that correlations in harmonic space are also non-
Gaussian

Tristan Smith

Why do we want to do this?
Any constraint to primordial non-Gaussianity probes the 
physics of the very early universe
In particular, assuming that inflation was driven by a single 
field one can show 

So that if we find                  then all single field inflationary 
models will be ruled out

[Creminelli and Zaldarriaga (2004)]

Measurement of the amplitude of the trispectrum,       , 
would give us additional constraints on the early-
universe physics which produces non-Gaussianities 
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Non-Gaussian estimation 
Constraints to non-Gaussianity

Slosar et al. (2008)

JC
A

P
08(2008)031

Constraints on local primordial non-Gaussianity from large scale structure

Figure 4. This figure shows the median value (red points) and 1σ, 2σ and 3σ
limits on fNL obtained from different probes (vertical lines). The data sets used
are, from top to bottom: photometric LRGs, photometric LRGs with only slices
0–4 used, spectroscopic LRGs, integrated Sachs–Wolfe effect, photometric QSO,
photometric QSOs using the b(z) ∝ 1/D(z) biasing scheme (see section 3.3),
photometric QSOs using the alternative χ2 calculation scheme (see section 3.3),
using a scale dependent bias formula appropriate for recently merged halos
(section 2.3), combined sample, combined sample using a scale dependent bias
formula appropriate for recently merged halos (for QSO); for the last two results
a statistically independent WMAP 5 bispectrum fNL constraint was added. See
the text for discussion.

its larger volume: it traces LRGs up to z ∼ 0.6 as opposed to z ∼ 0.45 for the spectroscopic
sample.

We find that the ISW is constraining the fNL parameter rather weakly. This is
somewhat disappointing, but not surprising, since the cross-correlation between LSS and
CMB is weak and has only been detected at a few sigma overall. In addition, as mentioned
above, fNL enters only linearly (rather than quadratically) in the ISW expressions and
is strongly degenerate with determination of b dn/dz. Given that ISW S/N can only be
improved by another factor of ∼2 at most even with perfect data we do not expect that
it will ever provide competitive constraints on fNL.

We find that the quasar power spectra give the strongest constraints on fNL. This is
due to their large volume and high bias. The lowest ! point in this data set at ! = 6 is
a non-detection and therefore highly constrains fNL in both directions. The second and
third points have some excess power relative to the best-fit fNL = 0 model and so give
rise to a slightly positive value of fNL in the final fits. This is however not a statistically
significant deviation from fNL = 0.

We also test the robustness of fNL constraints from the quasar sample power spectrum
by performing the following tests. First we change the form of evolution of the bias from
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Non-Gaussian estimation 
Constraints to non-Gaussianity

WMAP constraint on bispectrum:

Komatsu et al. (2010)

WMAP constraint on trispectrum:

Smidt et al. (2010)

Tristan Smith

Non-Gaussian estimation 
For the rest of this talk, we will work in a simplified limit: flat-
sky, Sachs-Wolfe limit

flat-sky:

Sachs-Wolfe:

Tristan Smith

Estimators for       and      
Expectation values of the harmonic coefficients are given by

We can construct an estimator as a weighted sum, i.e.

We optimize this estimator by requiring the signal-to-noise to 
be maximized



Tristan Smith

Maximizing the S/N gives an inverse-variance weighted 
sum:

What are the statistics of these estimators?  Usually we 
assume the central limit theorem applies...

Estimators for       and      

An observation gives         independent measurements

Tristan Smith

Statistics of the estimators

For      we sum over all triangles           ,          of these

For      we sum over all quadrilaterals           ,          of these
Central lim

it th
eorem does not apply!

At its core, these estimators are a weighted sum of the 
product of Gaussian random variables:

The simplest case is 

Tristan Smith

Examples of non-Gaussian PDFs

The simplest case is 

At its core, the bispectrum       estimator is a weighted sum of 
the product of three Gaussian random variables:

Tristan Smith

3

to Â is (∆A)2 =
〈
Â2

〉
−

〈
Â

〉2
=

〈
x̂6

〉
−

〈
x̂3

〉2
=

15/N3.3 The N−3 scaling of the variance arises because
the PDF for Â is not Gaussian; it is given by P (Â) =

(N/2π)1/2(3Â2/3)−1e−N bA2/3/2, as shown in Fig. 1. Note
further that the distribution does not approach a Gaus-
sian as N → ∞, as might be guessed from the central-
limit theorem. The central-limit theorem does not apply
in this case: although the covariance between most of
the different “data points,”—the triplets xixjxk—may
be zero, they are not statistically independent; the joint
distribution function for two triplets is not always equal
to the product of the distribution functions for each of
the triplets, even if they have zero covariance.

FIG. 1: The probability distribution function for the estima-
tor for the skewness (solid black curve) along with a Gaussian
PDF (dashed red curve) of the same variance. They are shown
on a log scale to emphasize the considerable differences that
may arise in the tails of the distribution.

This simple example shows that a 99.7% confidence
region is not necessarily equal to 3 times the variance
(i.e., “3σ”). More precisely, if we have N data points,
we infer from above a variance σ bA =

√
15/N3/2 to the

estimator Â. We thus naively expect that a measure-
ment that obtained Â ! 3

√
15/N3/2 % 12/N3/2 would

variance estimator for cfnl.
3 Strictly speaking, the variance to bA can be reduced to 6/N3,

albeit at the expense of a biased estimator, by replacing
D

bA
E

by

bA; see, e.g., Ref. [12].

constitute a “3σ” departure from A = 0. But this is
not correct! A measured value of x̂, from N data points,
deviates from zero at the 99.7% confidence level (3σ) if
x̂ > 3/

√
N (assuming unit variance, σ2 ≡

〈
x2

〉
= 1), and

this corresponds to a value Â ! 27/N3/2 % 7σ bA. Thus,
a 99.7% confidence-level detection of A '= 0 requires a
measurement Â ! 7σ bA. A value of Â larger simply than
3σ bA % 12/N3/2 would in fact correspond to only a 2.3σ
fluctuation.

B. Toy problem II

Next consider the quantity,

Â =
∑

1≤i<k<j≤N

xixjxk, (3)

where again the xi are Gaussian random variables with
〈xi〉 = 0 and 〈xixj〉 = δij . This, like estimator for
the bispectrum, is a sum of products (under the null
hypothesis) of three Gaussian random variables. More-
over, each of the triplets xixjxk has zero covariance with

any other. The fractional variance ∆Â/
〈
Â

〉
will thus

be proportional to N−3/2. In this case, the faster-than-
N−1 improvement of the variance with N occurs because
the ∼ N3 triplets are not statistically independent, even
though they have zero covariance. The central-limit the-
orem does therefore not apply, and it is not safe to as-
sume that the PDF for Â will approach a Gaussian in
the large-N limit.

To test this, we calculated the PDF of this quantity nu-
merically by generating 106 realizations of Â, each with
N = 100 points xi’s. The results are shown in Fig. 2.
This PDF isn’t Gaussian! far from it! This double-
peaked structure comes as a complete surprise. Inter-
pretation of results of a measurement of Â could go far
awry if the PDF were assumed to be Gaussian with the
same variance. Although we were not able to derive an
analytic approximation for this PDF, we understand ana-
lytically in the Appendix the PDF for a similar quantity.

The two examples discussed in this Section indicate the
possible perils that may arise in assuming the PDF for
f̂nl to be Gaussian. In both cases, we saw that the PDF
for a sum of products of three Gaussian random variables
differed considerably from the Gaussian distribution with
the same variance; in one case, the 99.7% C.L. interval
was larger than three times the variance, and in the other
it was smaller. Likewise, since there are good reasons to
believe that P (f̂nl) may be non-Gaussian, it is not pos-
sible to infer from the 99.7% confidence-level allowable
range for f̂nl just from analytic or numerical calculation
of the variance.
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This simple example shows that a 99.7% confidence
region is not necessarily equal to 3 times the variance
(i.e., “3σ”). More precisely, if we have N data points,
we infer from above a variance σ bA =
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15/N3/2 to the

estimator Â. We thus naively expect that a measure-
ment that obtained Â ! 3
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3 Strictly speaking, the variance to bA can be reduced to 6/N3,

albeit at the expense of a biased estimator, by replacing
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by
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constitute a “3σ” departure from A = 0. But this is
not correct! A measured value of x̂, from N data points,
deviates from zero at the 99.7% confidence level (3σ) if
x̂ > 3/

√
N (assuming unit variance, σ2 ≡

〈
x2

〉
= 1), and

this corresponds to a value Â ! 27/N3/2 % 7σ bA. Thus,
a 99.7% confidence-level detection of A '= 0 requires a
measurement Â ! 7σ bA. A value of Â larger simply than
3σ bA % 12/N3/2 would in fact correspond to only a 2.3σ
fluctuation.

B. Toy problem II

Next consider the quantity,

Â =
∑

1≤i<k<j≤N

xixjxk, (3)

where again the xi are Gaussian random variables with
〈xi〉 = 0 and 〈xixj〉 = δij . This, like estimator for
the bispectrum, is a sum of products (under the null
hypothesis) of three Gaussian random variables. More-
over, each of the triplets xixjxk has zero covariance with

any other. The fractional variance ∆Â/
〈
Â

〉
will thus

be proportional to N−3/2. In this case, the faster-than-
N−1 improvement of the variance with N occurs because
the ∼ N3 triplets are not statistically independent, even
though they have zero covariance. The central-limit the-
orem does therefore not apply, and it is not safe to as-
sume that the PDF for Â will approach a Gaussian in
the large-N limit.

To test this, we calculated the PDF of this quantity nu-
merically by generating 106 realizations of Â, each with
N = 100 points xi’s. The results are shown in Fig. 2.
This PDF isn’t Gaussian! far from it! This double-
peaked structure comes as a complete surprise. Inter-
pretation of results of a measurement of Â could go far
awry if the PDF were assumed to be Gaussian with the
same variance. Although we were not able to derive an
analytic approximation for this PDF, we understand ana-
lytically in the Appendix the PDF for a similar quantity.

The two examples discussed in this Section indicate the
possible perils that may arise in assuming the PDF for
f̂nl to be Gaussian. In both cases, we saw that the PDF
for a sum of products of three Gaussian random variables
differed considerably from the Gaussian distribution with
the same variance; in one case, the 99.7% C.L. interval
was larger than three times the variance, and in the other
it was smaller. Likewise, since there are good reasons to
believe that P (f̂nl) may be non-Gaussian, it is not pos-
sible to infer from the 99.7% confidence-level allowable
range for f̂nl just from analytic or numerical calculation
of the variance.

Examples of non-Gaussian PDFs
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Computationally intensive
1000 realizations takes at least 1000 CPU-hours!

This is good enough to determine the variance of the 
estimator, but not to determine the shape of the PDF

For a non-Gaussian process, 1000 realizations gives the 
following histogram:

�0.04 �0.02 0.00 0.02 0.04

Tristan Smith

1000 realizations takes at least 500 CPU-hours!

This is good enough to determine the variance of the 
estimator, but not to determine the shape of the PDF

For a non-Gaussian process, 1000 realizations gives the 
following histogram; for       realizations we find this (!!): 

�0.04 �0.02 0.00 0.02 0.04 �0.10 �0.05 0.00 0.05 0.10

Computationally intensive
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Non-Gaussian estimation 
Flat sky/ Sachs Wolfe will reproduce the correct scalings 
and give order of magnitude estimates:

III. SCALING FORMULAS FOR THE SIGNAL-TO-
NOISE RATIO

The shape of the S=N vs lmax curve in Fig. 4 implies
that our naive expectations of the effects of the photon
diffusion are incorrect. We do not see a saturation of the
S=N curve that we predicted earlier. In order to verify
these counterintuitive results we will alter the CMBFAST
transfer functions by hand to test how sensitive the results
are to the actual form of the transfer functions. In the first
case we explicitly include additional damping by multi-
plying the CMBFAST transfer functions by an exponential
!l!k" ! !l!k"e#!k=kD"2 , where the silk damping scale,
kD $ 500=rD, is chosen such that the effects appear
near l% 500. In the next case we remove all influence
of radiative transfer by choosing !l!k" ! !jl!krD", where
! is some constant that will always cancel in the formula
for the !S=N"2, Eq. (14).

In Fig. 6, all the S=N curves are roughly parallel
meaning that our radical altering of the transfer function
only changes the numerical coefficients in the expressions
for S=N. The functional dependence on lmax appears to be
close to the same for all three examples. This suggests that
we can understand these scalings by using simple toy
models.

A. No radiative transfer

As a first example we will calculate the S=N in the
flat-sky approximation and with no radiative transfer;

therefore we will simply observe the underlying modes
restricted to the plane of the sky.

Here we adopt the following conventions:

h"!k1""!k2"i $ !2""3#!3"!k1 & k2"P!k"; (30)

h"!k1""!k2""!k3"i $ !2""3#!3"!k1 & k2
& k3"B!k1; k2; k3"; (31)

and maintain the previously specified conventions for the
CMB anisotropy Fourier coefficients, Eq. (19). Using our
assumptions of the flat-sky approximation with no radia-
tive transfer, the Fourier coefficients of the temperature
anisotropies can be expressed as

a!l" $ !2""2
Z d3k

!2""3 "!k"eikzrD#!2"!l# kkrD"; (32)

where rD is the distance to the surface of last scattering
and kk is the Fourier wave vector parallel to the surface of
last scattering. The power spectrum of this model is

l2C!l"
2"

$ A
2"2 $

k3P!k"
2"2 ' !2; (33)

where A is the amplitude of the scale invariant power
spectrum P!k" $ A=k3. Likewise we can find the bispec-
trum

B!l1; l2; l3" $
2fNLA2

"2

!
1

l22l
2
1

& cyc:
"

: (34)

Using the standard formula #!2"!0" $ fsky=" and substi-
tuting these results in Eq. (26) gives

!
S
N

"
2
$ fskyf2NLA

6"4

Z

d2l1d2l2d2l3#!2"!l1 & l2

& l3"l21l22l23
!
1

l21l
2
2

& cyc:
"
2
; (35)

and evaluating the above expression we find
!
S
N

"
2
$ 4

"2 fskyf
2
NLAl

2
max ln

lmax

lmin
: (36)

The logarithm is typical of scale invariant primordial
power spectra [35]. If the primordial perturbations were
generated by a Poisson process so each point in space was
statistically independent, the logarithm would be absent
and the dependence on lmax would solely be l2max.
Equation (36) can be written in a more physical way by
relating it to other observables,

!
S
N

"
2
$ 8!fNL!"2Npix ln

lmax

lmin
; (37)

where Npix $ fskyl2max is the number of observed pixels.

FIG. 6 (color online). !S=N"f#1
NL vs lmax for TTT of the full

calculation including the CMBFAST transfer functions (solid,
black line), no transfer function (long dashed, blue line), and
the CMBFAST transfer functions with additional damping
(dashed, red line).
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First investigate the shape of the PDF for 
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Full shape of the PDF

where tð!Þ is a Gaussian random field with a power spec-
trum Cl given in Eq. (4). To zeroth order in fnl, the power

spectrum and correlation function for Tð ~!Þ are the same as

those for tð ~!Þ. Note that Tð ~!Þ is, strictly speaking, the

temperature fluctuation, so hTð ~!Þi ¼ 0 ¼ T~l¼0. The bis-
pectrum for this model is

Bðl1; l2; l3Þ ¼ 6fnlðCl1Cl2 þ Cl1Cl3 þ Cl2Cl3Þ: (11)

The temperature Fourier coefficients can be written
T~l ¼ t~l þ fnl"t

2
~l
with

"t2~l %
3

!

X

~l0
t~l&~l0 t~l0 : (12)

Formally, the sum goes from 0< j~l0j ' 1, but for a finite-
resolution map, the sum is truncated at some lmax such that
the number of Fourier modes equals the number of data
points.

We now proceed to evaluate Pðcfnl; fnl; lmaxÞ, the PDF
that arises if the true value is fnl for the NHMV estimator
cfnl and for a map with lmax. To do so, we generated large
numbers of Monte Carlo realizations of maps according to
Eq. (12), for some assumed value of fnl, and then applied
the estimator in Eq. (8) to these maps. Each map is simu-
lated in harmonic space from lmin ¼ 2 up to a maximum
multipole lmax. In order to produce a large number of
realizations we reexpressed the generation of maps and
implementation of the estimator in terms of fast Fourier
transforms as discussed in Appendix A.

A. The PDF of the null-hypothesis minimum-variance
estimator with fnl ¼ 0

First we consider the shape of Pðcfnl; fnl ¼ 0; lmaxÞ, the
PDF for the NHMVestimator in Eq. (8) applied to a purely
Gaussian (fnl ¼ 0) map. To do this we generated 106

Gaussian realizations and applied the estimator in Eq. (8)

to generate a histogram of values of cfnl. From this histo-

gram we determined Pðcfnl; fnl ¼ 0; lmaxÞ out to 4 times the
root variance, as shown in Fig. 1.

First we note that our simulations verify that the variance
of the distribution for the null case is well approximated by
the analytic expression [16,17],

#2
fnl

( 1

72Al2max lnðlmaxÞ
: (13)

Additionally our simulations show that out to at least

4 times the root variance, the PDF Pðcfnl; fnl ¼ 0; lmaxÞ is
well approximated by a Gaussian for lmax * 25, even
though the conditions for the central-limit theorem to apply

are not satisfied. Therefore, a measurement of cfnl that
differed from 0 at more than 3 times the root variance
would indeed constitute a ‘‘99.7% confidence-level’’ in-
consistency with the fnl ¼ 0 hypothesis.

B. The PDF of the null-hypothesis minimum-variance
estimator with fnl ! 0

We now consider the form of Pðcfnl; fnl; lmaxÞ when
fnl ! 0, the PDF for the null-hypothesis minimum-
variance estimator if the null hypothesis is in fact not valid.
In this case, the non-Gaussian statistics of the T~l’s impart

some non-Gaussianity to the cfnl PDF.
In Fig. 2 we show Pðcfnl; fnl; lmaxÞ calculated using 106

realizations with fnl ¼ 1500 and lmax ¼ 25. Clearly the
PDF in this case is highly non-Gaussian.

Non-Gaussianity of Pðcfnl; fnl; lmaxÞ for a central value
fnl ! 0 may be significant for the interpretation of data.
Suppose, for example, that a CMB measurement returns
cfnl ¼ 0 with a root variance #fnl ¼ 40. If the PDF was

assumed to be Gaussian the measurement cfnl ¼ 0 would
rule out fnl ¼ 100 at the 2:5# level, but given the asym-
metric PDF of Fig. 2 it may rule out fnl ¼ 100 at a much
higher significance.
In order to better understand the origin of the non-

Gaussian PDF, it is useful to expand the minimum-variance
estimator in Eq. (8) to linear order in fnl [14]:

cfnl ( E0 þ fnlE1 þ ) ) ) ; (14)

where

E0 ¼ #2
fnl

X

~l1þ~l2þ~l3¼0

t~l1 t~l2t~l3
6!2fnlCl1Cl2Cl3

Bðl1; l2; l3Þ; (15)

FIG. 1 (color online). Numerical evaluations of Pðcfnl; fnl ¼
0; lmaxÞ. The left (right) two panels show the PDF for lmax ¼ 5
and lmax ¼ 25 for 106 realizations for a scale-invariant power
spectrum. In all panels the PDF has been normalized to have a
unit variance, and the corresponding Gaussian PDF (with the
same variance) is shown as the red dashed curve. As lmax gets
larger, the PDF tends toward a Gaussian. This is not guaranteed
by the central-limit theorem since the majority of the terms that
appear in the estimator are not statistically independent.
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Doing the same for                               , we find it is highly 
non-Gaussian:

Tristan Smith

4

FIG. 2: The black-solid curve shows the PDF of (f̂2
nl)

t under
the null-hypothesis, fnl = 0 for lmax = 50 and calculated with
106 realizations. The red-dashed curve shows a Gaussian PDF
with the same variance. The upper panel shows the PDF on
a linear scale, the low panel on a logarithmic scale. When
scaled by its variance, the PDF is identical for lmax = 100
showing that it takes on a universal form in the lmax ! 1
limit. We give a fitting formula for this PDF in Eq. (15).

shape shown in Fig. 2. The PDF is well fit by the formula

P [(f̂2
nl)

t; fnl = 0, lmax] =
1

σ0N
(15)





e
− 1

2

∣∣ (f̂2
nl)

t/σ−xp
σp

∣∣n
, (f̂2

nl)
t/σ ≤ xp

e
− c

σ2
p

(√
((f̂2

nl)
t/σ−xp)2+c2−c

)

, (f̂2
nl)

t/σ > xp,

where σ is the variance of the estimator given in Eq. (14),
the normalization, N , is given by

N ≡ 2σpΓ

(
n+ 1

n

)
+ c ec

2/σ2
pK1

(
c2

σ2
p

)
, (16)

where Γ is the Euler Gamma function and K1 is the
modified Bessel function of the first kind, n = 3, xp =
−0.13, σp = 0.64, and c = 0.488.

B. The PDF of (f̂2
nl)

t with fnl "= 0

For fnl $= 0 the non-Gaussianity in the CMB
map imparts further non-Gaussianity to the shape of

P [(f̂2
nl)

t; fnl, lmax]. In addition to this, the variance has
a strong dependence on fnl so that when fnl and lmax

are large enough the S/N of the estimator approaches a
constant value.
In order to investigate how the variance of (f̂2

nl)
t de-

pends on fnl it is useful to expand it in powers of fnl.

Given that Tl is linear in fnl and that (f̂2
nl)

t is quartic in
Tl the expansion includes terms up to fnl

4:

(f̂2
nl)

t = T0 + fnlT1 + fnl
2T2 + fnl

3T3 + fnl
4T4, (17)

where each Ti ∼ Σti+4
l . We give explicit expressions for

the Ti in the Appendix.
Since only cross-correlations which include even prod-

ucts of t are non-zero the variance of (f̂2
nl)

t is given by

〈[
∆(f̂2

nl)
t
]2〉

= σ2
0 + fnl

2(σ2
1 + σ2

0,2) (18)

+ fnl
4(σ2

2 + σ2
0,4 + σ2

1,3)

+ fnl
6(σ2

3 + σ2
2,4) + fnl

8σ2
4 ,

where, for example, σ2
0,2 denotes the covariance between

T0 and T2.
Calculating the terms that appear in Eq. (19) using

Monte Carlo simulations we find that for fnl < 100 and
lmax < 104 only σ2

1 and σ2
2 significantly contribute. The

variance is then well approximated by

〈[
∆(f̂2

nl)
t
]2〉

≈ σ2
0 + fnl

2σ2
1 + fnl

4σ2
2 , (19)

where σ2
0 is given in Eq. (14) and

σ2
1 =

0.028

Almax
2 , (20)

σ2
2 = 0.23. (21)

The results of our Monte Carlo simulations are shown in
Fig. 3.
The scaling given in Eq. (19) shows that for a large

enough lmax the variance of the estimator scales as fnl
4

so that the signal-to-noise becomes constant for fnl !
0.35/(

√
Almax). A similar scaling is observed with the

minimum variance null-hypothesis estimator using the
CMB bispectrum [28, 29]. Neglecting the dependence of
the variance on fnl, previous work [16] claimed that for
large enough fnl the minimum variance null-hypothesis
estimator using the CMB trispectrum would be more sen-
sitive to a non-Gaussian signal than an estimator using
the CMB bispectrum. Given the dependence of the vari-
ance on fnl our calculations demonstrate that this is not
the case, as shown by the solid curves in Fig. 4.
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For             the non-Gaussianity in the map imparts additional 
non-Gaussianity to the bispectrum PDF and trispectrum PDF
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In addition, the variance of these estimators depends on the 
value of        and       ...  

For             the non-Gaussianity in the map imparts additional 
non-Gaussianity to the bispectrum PDF and trispectrum PDF
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The fact that the variance depends on        and        is easy to 
see:
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Evolution of the variance



Our calculations show that the variances of these estimators 
scale with         as: 
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Evolution of the variance

Now we have everything we need to evaluate the significance 
of a hypothetical detection...

If, in addition, we did not take into account how the variance 
depends on the amplitudes we would have concluded

Our full calculations give
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What could have gone wrong?

If we did not take into account the non-Gaussian shape of the 
PDF then we would have concluded

In 2006 Kogo and Komatsu claimed that for large enough       
the trispectrum estimator has a larger S/N than the bispectrum 
estimator 
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Dispelling a claim

With the correct scaling, we can see that the bispectrum 
estimator will always have a higher S/N

Small-scale CMB observations show an anomalously large value for 
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Conclusions

Explored how observations probe the interaction/clustering properties of 
this anomalous radiative energy density 

The central limit theorem does not apply to non-Gaussian estimators-- PDFs 
of these estimators may, themselves, be non-Gaussian

The effect on the bispectrum estimator is small; the effect on the trispectrum 
estimator is large-- must be included when stating the significance of a 
measurement

We found that with an expanded parameterization the data is still at odds 
with the standard neutrino sector at > 95 % CL and consistent with a non-
interacting fluid


